https://www.eminence.com/support/unders ... aker-data/XMAX/XLIM
Short for Maximum Linear Excursion. Speaker output becomes non-linear when the voice coil begins to leave the magnetic gap. Although suspensions can create non-linearity in output, the point at which the number of turns in the gap (see BL) begins to decrease is when distortion starts to increase. Eminence has historically been very conservative with this measurement and indicated only the voice coil overhang (Xmax: Voice coil height minus top plate thickness, divided by 2). The Xmax figures on this website are expressed as the greater of the result of the formula above or the excursion point of the woofer where THD reahes 10%. This method results in a more real world expression of the usable excursion limit for the transducer. Xlim is expressed by Eminence as the lowest of four potential failure condition measurements: spider crashing on top plate; Voice coil bottoming on back plate; Voice coil coming out of gap above core; or the physical limitation of cone. A transducer exceeding the Xlim is certain to fail from one of these conditions. High pass filters, limiters, and enclosure modeling software programs are valuable tools in protecting your woofers from mechanical failure.
https://en.wikipedia.org/wiki/Thiele/SmallLarge signal parameters[edit]
These parameters are useful for predicting the approximate output of a driver at high input levels, though they are harder, sometimes extremely hard or impossible, to accurately measure. In addition, power compression, thermal, and mechanical effects due to high signal levels (e.g., high electric current and voltage, extended mechanical motion, and so on) all change driver behavior, often increasing distortion of several kinds.
Xmax - Maximum linear peak (or sometimes peak-to-peak) excursion (in mm) of the cone. Note that, because of mechanical issues, the motion of a driver cone becomes non-linear with large excursions, especially those in excess of this parameter.
Xmech - Maximum physical excursion of the driver before physical damage. With a sufficiently large electrical input, the excursion will cause damage to the voice coil or another moving part of the driver. In addition, arrangements for voice coil cooling (e.g., venting of the pole piece, or openings in the voice coil former above the coil itself, both allowing heat dissipation with air flow) will themselves change behaviors with large cone excursions.
Pe - Thermal power handling capacity of the driver, in watts. This value is difficult to characterize and is often overestimated, by manufacturers and others. As the voice coil heats, it changes dimension to some extent, and changes electrical resistance to a considerable extent. The latter changes the electrical relationships between the voice coil and passive crossover components, changing the slope and crossover points designed into the speaker system.
Vd - Peak displacement volume, calculated by Vd = Sd·Xmax